2 4 Ja n 20 07 WEIGHTED POINCARÉ INEQUALITY AND RIGIDITY OF COMPLETE MANIFOLDS

نویسندگان

  • Jiaping Wang
  • JIAPING WANG
چکیده

Abstract. We prove structure theorems for complete manifolds satisfying both the Ricci curvature lower bound and the weighted Poincaré inequality. In the process, a sharp decay estimate for the minimal positive Green’s function is obtained. This estimate only depends on the weight function of the Poincaré inequality, and yields a criterion of parabolicity of connected components at infinity in terms of the weight function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 07 01 69 3 v 2 [ m at h . D G ] 1 4 Fe b 20 07 WEIGHTED POINCARÉ INEQUALITY AND RIGIDITY OF COMPLETE MANIFOLDS

Abstract. We prove structure theorems for complete manifolds satisfying both the Ricci curvature lower bound and the weighted Poincaré inequality. In the process, a sharp decay estimate for the minimal positive Green’s function is obtained. This estimate only depends on the weight function of the Poincaré inequality, and yields a criterion of parabolicity of connected components at infinity in ...

متن کامل

Stable Solutions of Elliptic Equations on Riemannian Manifolds

Abstract. This paper is devoted to the study of rigidity properties for special solutions of nonlinear elliptic partial differential equations on smooth, boundaryless Riemannian manifolds. As far as stable solutions are concerned, we derive a new weighted Poincaré inequality which allows to prove Liouville type results and the flatness of the level sets of the solution in dimension 2, under sui...

متن کامل

Sharp Geometric and Functional Inequalities in Metric Measure Spaces with Lower Ricci Curvature Bounds

Abstract. For metric measure spaces verifying the reduced curvature-dimension condition CD∗(K,N) we prove a series of sharp functional inequalities under the additional assumption of essentially nonbranching. Examples of spaces entering this framework are (weighted) Riemannian manifolds satisfying lower Ricci curvature bounds and their measured Gromov Hausdorff limits, Alexandrov spaces satisfy...

متن کامل

Compactifications of Complete Riemannian Manifolds and Their Applications

To study a noncompact Riemannian manifold, it is often useful to …nd a compacti…cation or attach a boundary. For example, in hyperbolic geometry a lot of investigation is carried out on the sphere at in…nity. An eminent illustration is Mostow’s proof of his rigidity theorem for hyperbolic manifolds [Mo]. More generally, if f M is simply connected and nonpositively curved, one can compactify it ...

متن کامل

Inequalities for the ADM-mass and capacity of asymptotically flat manifolds with minimal boundary

We present some recent developments involving inequalities for the ADM-mass and capacity of asymptotically flat manifolds with boundary. New, more general proofs of classic Euclidean estimates are also included. The inequalities are rigid and valid in all dimensions, and constitute a step towards proving the Riemannian Penrose inequality in arbitrary dimensions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007